Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)S2 solar cells

Identifieur interne : 000499 ( Main/Repository ); précédent : 000498; suivant : 000500

Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)S2 solar cells

Auteurs : RBID : Pascal:13-0132050

Descripteurs français

English descriptors

Abstract

Ultra-thin solar cells on transparent back contacts constitute the basis for highly efficient tandem solar devices which can surpass the single cell efficiency limit. The material reduction related to ultra-thin high efficiency devices additionally lowers the price. Despite the fact that they are ultra-thin the absorbers still have to remain optically thick and therefore require adequate light management. A promising approach for enhanced absorption is plasmonic scattering from metal nanoparticles. In this paper we discuss the experimental incorporation of Ag nanoparticles in ultra-thin wide-gap chalcopyrite solar cells on transparent back contacts. A 6.9% efficient 500 nm Cu(In,Ga)S2 solar cell on In2O3:Mo (at this point without nanoparticles) is the starting point. For the predicted optimum design of including particles at the rear side the stability of the nanostructures integrated in the back contact is investigated in detail. As a first step towards proof-of-concept, absorption enhancement from the nanoparticles included in the complete solar cell is experimentally shown in optical properties.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0132050

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)S
<sub>2</sub>
solar cells</title>
<author>
<name sortKey="Schmid, M" uniqKey="Schmid M">M. Schmid</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Heterogeneous Material Systems, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klaer, J" uniqKey="Klaer J">J. Klaer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Helmholtz Zentrum Berlin, Technology, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klenk, R" uniqKey="Klenk R">R. Klenk</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Heterogeneous Material Systems, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Topic, M" uniqKey="Topic M">M. Topic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krc, J" uniqKey="Krc J">J. Krc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0132050</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0132050 INIST</idno>
<idno type="RBID">Pascal:13-0132050</idno>
<idno type="wicri:Area/Main/Corpus">001029</idno>
<idno type="wicri:Area/Main/Repository">000499</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chalcopyrite</term>
<term>Copper</term>
<term>Gallium</term>
<term>Indium oxide</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Optical properties</term>
<term>Plasmons</term>
<term>Rapid thermal processing</term>
<term>Silver</term>
<term>Solar cells</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Plasmon</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Cellule solaire</term>
<term>Nanostructure</term>
<term>Propriété optique</term>
<term>Couche mince</term>
<term>Traitement thermique rapide</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Argent</term>
<term>Chalcopyrite</term>
<term>Oxyde d'indium</term>
<term>Substrat Molybdène</term>
<term>In2O3</term>
<term>8107</term>
<term>8460J</term>
<term>7866</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ultra-thin solar cells on transparent back contacts constitute the basis for highly efficient tandem solar devices which can surpass the single cell efficiency limit. The material reduction related to ultra-thin high efficiency devices additionally lowers the price. Despite the fact that they are ultra-thin the absorbers still have to remain optically thick and therefore require adequate light management. A promising approach for enhanced absorption is plasmonic scattering from metal nanoparticles. In this paper we discuss the experimental incorporation of Ag nanoparticles in ultra-thin wide-gap chalcopyrite solar cells on transparent back contacts. A 6.9% efficient 500 nm Cu(In,Ga)S
<sub>2</sub>
solar cell on In
<sub>2</sub>
O
<sub>3</sub>
:Mo (at this point without nanoparticles) is the starting point. For the predicted optimum design of including particles at the rear side the stability of the nanostructures integrated in the back contact is investigated in detail. As a first step towards proof-of-concept, absorption enhancement from the nanoparticles included in the complete solar cell is experimentally shown in optical properties.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>527</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)S
<sub>2</sub>
solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHMID (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KLAER (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KLENK (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TOPIC (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KRC (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Heterogeneous Material Systems, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Helmholtz Zentrum Berlin, Technology, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>308-313</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000503724660530</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0132050</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Ultra-thin solar cells on transparent back contacts constitute the basis for highly efficient tandem solar devices which can surpass the single cell efficiency limit. The material reduction related to ultra-thin high efficiency devices additionally lowers the price. Despite the fact that they are ultra-thin the absorbers still have to remain optically thick and therefore require adequate light management. A promising approach for enhanced absorption is plasmonic scattering from metal nanoparticles. In this paper we discuss the experimental incorporation of Ag nanoparticles in ultra-thin wide-gap chalcopyrite solar cells on transparent back contacts. A 6.9% efficient 500 nm Cu(In,Ga)S
<sub>2</sub>
solar cell on In
<sub>2</sub>
O
<sub>3</sub>
:Mo (at this point without nanoparticles) is the starting point. For the predicted optimum design of including particles at the rear side the stability of the nanostructures integrated in the back contact is investigated in detail. As a first step towards proof-of-concept, absorption enhancement from the nanoparticles included in the complete solar cell is experimentally shown in optical properties.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Plasmon</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Plasmons</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Traitement thermique rapide</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Rapid thermal processing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Chalcopyrite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Chalcopyrite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Substrat Molybdène</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>105</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000499 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000499 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0132050
   |texte=   Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)S2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024